Showing posts with label Todays Math Problem (Related Rates). Show all posts
Showing posts with label Todays Math Problem (Related Rates). Show all posts

Monday, April 23, 2007

Todays Math Problem (RELATED RATES)

Boyles’ Law states that when a sample of gas is compressed at a constant temperature, the pressure P and the volume V satisfy the equation PV = C, where C is a constant. Suppose that at a certain instant the volume is 600 cm^3, the pressure is 150 kPa, and the pressure is increasing at a rate of 20 kPa/min. At what rate is the volume decreasing at this instant?

Hmm… we are given that PV = C, where C is a constant, So we can plug our values in for P and V where P = 150 kPa and V = 600 cm^3 therefore we get that 150*600 = C
But we are not asked to find what C equals we are asked to find out how fast the rate of V is decreasing over time. When dP/dt = 20 kPa/min
To figure this one out we need to take the derivatives of our equations using the rules for related rates. Which say that dV/dP = dV/dt*dt/dP so dV/dt = dV/dP*dP/dt and dP/dt = dP/dV*dV/dt so we get dV/dt*dP/dt = dV/dP*dP/dt*dP/dV*dV/dt = dV/dt * dP/dt so since everything else cancels out we will us dV/dt which reads the derivative of Volume in respect to time, and dP/dt which reads the derivative of Pressure in respect to time.

So lets see what we can find out.

Differentiating both sides of the equation PV = C we get P*dV/dt + V*dP/dt = 0 (by the product rule)
Subtracting V*dP/dt from both sides we get P*dV/dt = -V*dP/dt
Dividing P from both sides we get dV/dt = -V/P*dP/dt

Now we can plug in our known values, V = 600 P = 150 and dP/dt = 20
To get dV/dt = -600/150*(20) = -80

Remembering that we are asked to find out what the instantaneous rate of change is which is (dV/dt) when the instantaneous rate of change of pressure is 20 kPa/min which is (Pv/dt) and knowing that the Volume is cm^3 we get a final answer that tells us that as the pressure approaches 20 kPa/min the volume be decreasing at 80 cm^3/min.